US009460815B2

a2 United States Patent

Sivasankaran et al.

US 9,460,815 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) REUSING PARTIAL BAD BLOCKS IN NAND (2013.01); G1IC 16/10 (2013.01); G1IC 29/70
MEMORY (2013.01); GI1IC 29/76 (2013.01); G1IC 29/82
(2013.01); GI1IC 29/88 (2013.01)
(71) Applicant: SanDisk Technologies Inc., Plano, TX (58) Field of Classification Search
Us) CPC e G11C 29/70
. . USPC ittt 365/185.09
(72) TInventors: Vijay Sivasankaran, Bangalore (IN); See application file for complete search history.
Vivek Shivhare, Bangalore (IN);
Abhijeet Manohar, Bangalore (IN) (56) References Cited
(73) Assignee: SanDisk Technologies LLC, Plano, TX U.S. PATENT DOCUMENTS
US
s 6,285,607 Bl 9/2001 Sinf:lair
(*) Notice: Subject to any disclaimer, the term of this 8,886,990 B2* 112014 Meir ...oowviervenn GO6F 1721/2/264?
patent is extended or adjusted under 35 2010/0172179 Al* 72010 Gorobefs GOGF 12/0246
U.S.C. 154(b) by 0 days. 365/185.09
2013/0326312 Al* 12/2013 Leeetal.cccoerernnnee 714/773
(21) Appl. No.: 14/261,750 2013/0336059 Al 12/2013 Lee et al.
2015/0003156 Al* 1/2015 Berckmann G11C 29/88
(22) Filed: Apr. 25,2014 365/185.09
* cited by examiner
(65) Prior Publication Data
Primary Examiner — Son Mai
US 2015/0187442 Al Jul. 2, 2015
bl (74) Attorney, Agent, or Firm — Brinks Gilson & Lione
(30) Foreign Application Priority Data 7) ABSTRACT
Dec. 30, 2013 (IN) .eoceviieeeieeenn 6168/CHE/2013 A system handles bad blocks in block-based NAND memory
by remapping wordlines that are unusable. Rather than
s Ul eliminate usage of an entire block, the system ma nami-
(51) Int. Cl limi ge of ire block, the sy y dynami
G1IC 16/06 (2006.01) cally remap the block to exclude only the unusable word-
G1IC 29/00 (2006.01) lines. The partial blocks utilize portions of the memory with
G1IC 16/10 (2006.01) good wordlines and the portions of memory with bad
G1IC 16/04 (2006.01) wordlines are redirected to one or more replacement blocks.
(52) US. CL
CPC ... G1IC 29/765 (2013.01); G1IC 16/0483 11 Claims, 6 Drawing Sheets

Host Data Block
with no bad Wordlines

Host Data Block
with bad Wordlines

504_/

Replacement Block(s)
for bad Wordlines

506—/

US 9,460,815 B2

U.S. Patent Oct. 4, 2016 Sheet 1 of 6
108 Applications
— 8
CPU — 4112
—100
- Host System
Host File
System ~ 1114

1

Y
I 10-~\/ Driver

A

L4
Memory System
- 14 102
106— | /—

}

—

v

18— Host Interface &
Memory Controller
| HIM 122

Controller Firmware
124 ™

Flash Mgmt.
| gmt. ||

FIM

-

N—126

N—128

hd

Y

Flash Memory

Figure 1

US 9,460,815 B2

Sheet 2 of 6

Oct. 4, 2016

U.S. Patent

ATOULN
ysefq

70T WoIsAS AI0WDpN

Qo7 | leng ered

90C pud yoeg

702 pud woig

A

8CT
WId

80C

- Ja[jonuo) - »

/(o:

NI

$0C
J9[ORU0) o B

WIH

(441

WIH

107 Js[jonuo)

1S0}]

Z ainbi4

/Kco {

U.S. Patent

Oct. 4, 2016 Sheet 3 of 6 US 9,460,815 B2
302 304 306 320 318 308
310—\\ /— 312—\\ f 314~\\ / ’/" N
SN NN NN R \\;&»\wg_m
326 Nz
322— 1 S -
324 e
Figure 3
312 314 316
N N N R
P1 L P1 L P1 L P1
P Pl eaPlid Pl
P3 P3 P3 P3
P4 P4 P4 P4
P4 P4 P4 P4
P& P& P6 PG
P7 P7 pP7 P7

Figure 4

U.S. Patent Oct. 4, 2016 Sheet 4 of 6 US 9,460,815 B2

Figure 5
Host Data Block Host Data Block Replacement Block(s)

with no bad Wordlines with bad Wordlines for bad Wordlines

502 504

506

U.S. Patent Oct. 4, 2016 Sheet 5 of 6 US 9,460,815 B2

Figure 6

602“‘\
Allocate partial blocks as update blocks

604‘*\‘i Y
Store data in update block until bad wordline

6067\ ; Y
Redirect bad wordline data to replacement block

608—\3 Y
Add entries in replacement block data structure

6107\ L/
Write remaining partial block

6127\ L/
Add GAT entries for partial block including bad wordlines

U.S. Patent Oct. 4, 2016 Sheet 6 of 6 US 9,460,815 B2

Figure 7

702_—\‘1
Detect a read request that includes one or more bad wordlines

Y

704 §
y Break the request into two or more requests where one covers the |
replacement block ‘

706“\
Process the requests in order

US 9,460,815 B2

1

REUSING PARTIAL BAD BLOCKS IN NAND
MEMORY

PRIORITY

This application claims priority to India Application
Number 6168/CHE/2013, filed on Dec. 30, 2013, entitled
“REUSING PARTIALL BAD BLOCKS IN NAND
MEMORY?™, the entire disclosure of which is herein incor-
porated by reference.

TECHNICAL FIELD

This application relates generally to memory devices.
More specifically, this application relates to evaluating
blocks of NAND memory in order to identify bad blocks
which are dynamically remapped for reuse.

BACKGROUND

Non-volatile memory systems, such as flash memory,
have been widely adopted for use in consumer products.
Flash memory may be found in different forms, for example
in the form of a portable memory card that can be carried
between host devices or as a solid state disk (“SSD”)
embedded in a host device. Flash memory may be written in
pages and erased in blocks, so once a page is written, a
rewrite may require the whole block to be erased. The
memory device firmware may handle memory in logical
groups and the logical to physical address table (i.e. the
global address table or “GAT”) may have an entry for each
logical group. Identification of which memory is bad may be
necessary for decreasing the risk of losing stored data. For
example, memory blocks that are identified as bad may be
avoided entirely while good blocks or blocks that are not
identified as bad may be used without restrictions. However,
avoiding an entire memory block may unnecessarily reduce
the overall capacity of the memory. Bad blocks may be
replaced with spare blocks, but that also reduces the overall
memory capacity, and an insufficient number of spare blocks
on a particular die may result in the memory not being able
to replace a particular bad block.

SUMMARY

It may be desirable to dynamically remap portions of a
bad blocks rather than eliminate usage of the entire block. A
block may include both good and bad data and rather than
exclude all data from a block with bad data, the remapping
can be used for the partial bad blocks. In particular, unusable
wordlines in NAND memory may be identified and dynami-
cally remapped.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a host connected with a
memory system having non-volatile memory.

FIG. 2 is a block diagram of an alternative memory
communication system.

FIG. 3 is an example physical memory organization of the
system of FIG. 1.

FIG. 4 is an expanded view of a portion of the physical
memory of FIG. 3.

10

15

20

25

30

40

45

50

55

60

65

2

FIG. 5 is an illustration of a replacement block.
FIG. 6 is a process for writing to a partial block.
FIG. 7 is a process for reading data from a partial block.

BRIEF DESCRIPTION OF THE PRESENTLY
PREFERRED EMBODIMENTS

A flash memory system suitable for use in implementing
aspects of the invention is shown in FIGS. 1-4. A host
system 100 of FIG. 1 stores data into and retrieves data from
a flash memory 102. The flash memory may be embedded
within the host, such as in the form of a solid state disk
(SSD) drive installed in a personal computer. Alternatively,
the memory 102 may be in the form of a flash memory card
that is removably connected to the host through mating parts
104 and 106 of a mechanical and electrical connector as
illustrated in FIG. 1. A flash memory configured for use as
an internal or embedded SSD drive may look similar to the
schematic of FIG. 1, with one difference being the location
of the memory system 102 internal to the host. SSD drives
may be in the form of discrete modules that are drop-in
replacements for rotating magnetic disk drives. As
described, flash memory may refer to the use of a negated
AND (NAND) cell that stores an electronic charge.

Examples of commercially available removable flash
memory cards include the CompactFlash (CF), the Multi-
MediaCard (MMC), Secure Digital (SD), miniSD, Memory
Stick, SmartMedia, TransFlash, and microSD cards.
Although each of these cards may have a unique mechanical
and/or electrical interface according to its standardized
specifications, the flash memory system included in each
may be similar. These cards are all available from SanDisk
Corporation, assignee of the present application. SanDisk
also provides a line of flash drives under its Cruzer trade-
mark, which are hand held memory systems in small pack-
ages that have a Universal Serial Bus (USB) plug for
connecting with a host by plugging into the host’s USB
receptacle. Each of these memory cards and flash drives
includes controllers that interface with the host and control
operation of the flash memory within them.

Host systems that may use SSDs, memory cards and flash
drives are many and varied. They include personal comput-
ers (PCs), such as desktop or laptop and other portable
computers, tablet computers, cellular telephones, smart-
phones, personal digital assistants (PDAs), digital still cam-
eras, digital movie cameras, and portable media players. For
portable memory card applications, a host may include a
built-in receptacle for one or more types of memory cards or
flash drives, or a host may require adapters into which a
memory card is plugged. The memory system may include
its own memory controller and drivers but there may also be
some memory-only systems that are instead controlled by
software executed by the host to which the memory is
connected. In some memory systems containing the control-
ler, especially those embedded within a host, the memory,
controller and drivers are often formed on a single integrated
circuit chip. The host may communicate with the memory
card using any communication protocol such as but not
limited to Secure Digital (SD) protocol, Memory Stick (MS)
protocol and Universal Serial Bus (USB) protocol.

The host system 100 of FIG. 1 may be viewed as having
two major parts, insofar as the memory device 102 is
concerned, made up of a combination of circuitry and
software. An applications portion 108 may interface with the
memory device 102 through a file system module 114 and
driver 110. In a PC, for example, the applications portion
108 may include a processor 112 for running word process-

US 9,460,815 B2

3

ing, graphics, control or other popular application software.
In a camera, cellular telephone that is primarily dedicated to
performing a single set of functions, the applications portion
108 may be implemented in hardware for running the
software that operates the camera to take and store pictures,
the cellular telephone to make and receive calls, and the like.

The memory system 102 of FIG. 1 may include non-
volatile memory, such as flash memory 116, and a device
controller 118 that both interfaces with the host 100 to which
the memory system 102 is connected for passing data back
and forth and controls the memory 116. The device control-
ler 118 may be implemented on a single integrated circuit
chip, such as an application specific integrated circuit
(ASIC). The device controller 118 may include a multi-
thread processor capable of communicating via a memory
interface 128 having I/O ports for each memory bank in the
flash memory 116. The device controller 118 may include an
internal clock. The processor of the device controller 118
may communicate with an error correction code (ECC)
module, a RAM buffer, and a boot code ROM via an internal
data bus.

The device controller 118 may convert between logical
addresses of data used by the host 100 and physical
addresses of the flash memory 116 during data programming
and reading. Functionally, the device controller 118 may
include a Host interface module (HIM) 122 that interfaces
with the host system controller logic 110, and controller
firmware module 124 for coordinating with the host inter-
face module 122, and flash interface module (FIM) 128.
Flash management logic 126 may be part of the controller
firmware 124 for internal memory management operations
such as garbage collection. One or more flash interface
modules (FIMs) 128 may provide a communication inter-
face between the controller with the flash memory 116.

A flash transformation layer (“FTL”) or media manage-
ment layer (“MML”) may be integrated in the flash man-
agement 126 and may handle flash errors and interfacing
with the host. In particular, flash management 126 is part of
controller firmware 124 and FTL may be a module in flash
management. The FTL may be responsible for the internals
of NAND management. In particular, the FTL may be an
algorithm in the memory device firmware which translates
writes from the host 100 into writes to the flash memory 116.
The FTL may be needed because: 1) the flash memory may
have limited endurance; 2) the flash memory 116 may only
be written in multiples of pages; and/or 3) the flash memory
116 may not be written unless it is erased as a block. The
FTL understands these potential limitations of the flash
memory 116 which may not be visible to the host 100.
Accordingly, the FTL attempts to translate the writes from
host 100 into writes into the flash memory 116. The FTL
may include the logical block address (“LLBA”) map that
translates addresses for the flash memory. An FTL algorithm
may provide logical to physical address mapping which
includes an algorithm to convert logical addresses from the
file system to physical addresses of flash memory. The FTL
may provide the remapping of memory with bad wordlines,
such that an entire block is not marked as defective when it
has bad wordlines. Rather, that block is a partial block but
the memory associated with the bad wordlines is no longer
used and remapped to one or more replacement blocks
which substitute for the memory associated with the bad
wordlines.

In one embodiment, the flash memory 116 may be con-
sidered to include multi-level cell (MLC) or single level cell
(SLC) memory. The memory may be included as part of the
device controller 118 rather than as part of the flash memory

10

15

20

25

30

35

40

45

50

55

60

65

4

116 in some embodiments. The flash memory 116 may be
mostly ML.C, while binary cache and update blocks may be
SLC memory. Update blocks may be SLC memory with
page based addressing or page based Logical Group (LG)
organization. The LG size for the GAT may depend on the
data. For example, sequential data may be indexed with a
large LG size, while fragmented data may be indexed with
a smaller LG size. In particular, the GAT may default to a
large LG size, but reference additional GAT pages for
fragmented data, where the additional GAT pages include a
smaller LG size. The LG size for the GAT and additional
GAT pages may occur at the FTL or flash management 126
of the controller 118.

FIG. 2 is a block diagram of an alternative memory
communication system. The host system 100 is in commu-
nication with the memory system 102 as discussed with
respect to FIG. 1. The memory system 102 includes a front
end 202 in communication with the host and a back end 206
coupled with the flash memory 116. In one embodiment, the
front end 202 and the back end 206 may be referred to as the
memory controller and may be part of the device controller
118. The front end 202 may logically include a Host
Interface Module (HIM) 122 and a HIM controller 204. The
back end 206 may logically include a Flash Interface Mod-
ule (FIM) 128 and a FIM controller 208. Accordingly, the
controller 201 may be logically portioned into two modules,
the HIM controller 204 and the FIM controller 208. The
HIM 122 provides interface functionality for the host device
100, and the FIM 128 provides interface functionality for the
flash memory 116. The controller 201 may be coupled with
a data buffer 208.

In operation, data is received from the HIM 122 by the
HIM controller 204 during a write operation of host device
100 on the memory system 102. The HIM controller 204
may pass control of data received to the FIM controller 208,
which may include the FTL discussed above. The FIM
controller 208 may determine how the received data is to be
written onto the flash memory 116 optimally. The received
data may be provided to the FIM 128 by the FIM controller
208 for writing data onto the flash memory 116 based on the
determination made by the FIM controller 208. The FIM
controller 208 and the FTL may operate the logical to
physical mapping of memory stored in the flash memory
116. In particular, the FIM controller 208 may operate the
addressing and remapping of a partial block as discussed
below with respect to FIGS. 5-7.

FIG. 3 conceptually illustrates an organization of the flash
memory 116 (FIG. 1) as a cell array. The flash memory 116
may include multiple memory cell arrays which are each
separately controlled by a single or multiple memory con-
trollers 118. Four planes or sub-arrays 302, 304, 306, and
308 of memory cells may be on a single integrated memory
cell chip, on two chips (two of the planes on each chip) or
on four separate chips. The specific arrangement is not
important to the discussion below. Of course, other numbers
of planes, such as 1, 2, 8, 16 or more may exist in a system.
The planes are individually divided into groups of memory
cells that form the minimum unit of erase, hereinafter
referred to as blocks. Blocks of memory cells are shown in
FIG. 3 by rectangles, such as blocks 310, 312, 314, and 316,
located in respective planes 302, 304, 306, and 308. There
can be any number of blocks in each plane.

The block of memory cells is the unit of erase, and the
smallest number of memory cells that are physically eras-
able together. For increased parallelism, however, the blocks
may be operated in larger metablock units or chunks. One
block from each plane is logically linked together to form a

US 9,460,815 B2

5

metablock. The four blocks 310, 312, 314, and 316 are
shown to form one metablock 318. All of the cells within a
metablock are typically erased together. The blocks used to
form a metablock need not be restricted to the same relative
locations within their respective planes, as is shown in a
second metablock 320 made up of blocks 322, 324, 326, and
328. Although it is usually preferable to extend the meta-
blocks across all of the planes, for high system performance,
the memory system can be operated with the ability to
dynamically form metablocks of any or all of one, two or
three blocks in different planes. This allows the size of the
metablock to be more closely matched with the amount of
data available for storage in one programming operation.

The individual blocks are in turn divided for operational
purposes into pages of memory cells, as illustrated in FIG.
4. The memory cells of each of the blocks 310, 312, 314, and
316, for example, are each divided into eight pages P0-P7.
Alternatively, there may be 16, 32 or more pages of memory
cells within each block. The page is the unit of data
programming and reading within a block, containing the
minimum amount of data that are programmed or read at one
time. However, in order to increase the memory system
operational parallelism, such pages within two or more
blocks may be logically linked into metapages. A metapage
402 is illustrated in FIG. 3, being formed of one physical
page from each of the four blocks 310, 312, 314, and 316.
The metapage 402, for example, includes the page P2 in
each of the four blocks but the pages of a metapage need not
necessarily have the same relative position within each of
the blocks. A metapage may be the maximum unit of
programming.

The memory cells may be operated to store two levels of
charge so that a single bit of data is stored in each cell. This
is typically referred to as a binary or single level cell (SLC)
memory. SLC memory may store two states: O or 1. Alter-
natively, the memory cells may be operated to store more
than two detectable levels of charge in each charge storage
element or region, thereby to store more than one bit of data
in each. This latter configuration is referred to as multi-level
cell (MLC) memory. For example, MLLC memory may store
four states and can retain two bits of data: 00 or 01 and 10
or 11. Both types of memory cells may be used in a memory,
for example binary SLC flash memory may be used for
caching data and MLLC memory may be used for longer term
storage. The charge storage elements of the memory cells are
most commonly conductive floating gates but may alterna-
tively be non-conductive dielectric charge trapping material.

As described, bad blocks (blocks with unusable physical
area for at least one or more wordlines) may be at least
partially used. This increases the logical capacity of the
memory by allowing the system to absorb more failed
blocks. The partial bad blocks may include good storage
space (good wordlines) and bad storage space (bad word-
lines). The good storage space may still be used and the
entire block is not disregarded as was done previously. The
individual wordlines may be marked as bad rather than
marking an entire block as bad because of one or more bad
wordlines.

There may be a plurality of replacement blocks that are
dynamically updated with data from bad wordlines in a
partial block. The dynamic updating of the bad wordlines to
a replacement block may be from the MML or FTL. For
example, an algorithm in the FTL may remap the wordlines
from a partial block to a replacement block. The remapping
process is dynamic because the replacement block would be
remapped in a garbage collection operation to ensure that the
data stored in the replacement block(s) is valid replacement

20

30

35

40

45

55

6

data. The replacement blocks store replacement data that
would otherwise be stored in bad wordlines. Rather than
rejecting the entire block (with the bad wordlines), this
partial block utilizes the replacement block to replace the
bad wordlines.

FIG. 5 is an illustration of a replacement block. In
particular, FIG. 5 illustrates a host data block and the use of
a replacement block for storing data. A host data block 502
with no bad wordlines does not utilize a replacement block.
A host data block 504 with bad wordlines may need to use
a replacement block. The replacement block 506 includes
entries MP0O and MP1 which were from the two bad word-
lines MP1 and MP4 from host data block 504. Although
described as wordlines, the data may be from a metapage as
shown in FIG. 5.

The replacement block 506 is used as a replacement for
bad wordlines from non-replacement or regular data blocks.
This enables a host data block (e.g. 504) with bad wordlines
to still be used rather than completely discarding the entire
block and marking it as a bad block. Instead the host data
block 504 with bad wordlines is referred to as a partial block.
The block is partial because one or more bad wordlines
limits the data that can be stored in the block and requires
that data to be stored in a replacement block. In one
embodiment, there may be multiple replacement blocks and
they may be referred to collectively as a ReMap Zone
(“RMZ”). As described, the replacement blocks provide a
way to ensure that no valid data is written to bad/unusable
wordlines. In one embodiment, neighboring wordlines to an
unusable wordline may be deemed susceptible to failures
and also identified as bad.

The replacement blocks in the RMZ are part of a subsys-
tem that can address less than block-sized chunks. The
process for utilizing partial blocks and replacement blocks
includes dynamically remapping the entire or a portion of a
metapage (“MP”) that corresponds to the failing wordlines.
The portion of the MP is smaller than a block size and the
addressing for that portion is remapped to the RMZ. This
wordline remap may be applicable only for bad metapages
that contain the failing wordlines and may be done as and
when they are written.

The remapping may work for failing wordlines that are
discovered during manufacturing process as well as dynami-
cally during run-time. The blocks that have the failing
wordlines are identified as partial blocks. These blocks may
be used as MLC blocks and the data in these blocks would
be addressed through the GAT subsystem.

There may be at least four options that are part of the
remapping process. A partial block write is for writing data
(see e.g. FIG. 6). A read data back operation is for reading
data (see e.g. FIG. 7). An invalidate obsolete data operations
handles requests for bad wordlines. A compact obsolete
space operation compacts the replacement blocks in the
RMZ.

FIG. 6 is a process for writing to a partial block. In block
602, partial blocks are allocated as update blocks for writing.
In block 604, data is stored in the update block until a
metapage has a bad wordline. When there is a bad wordline,
data that would need to be stored in the bad metapage is
redirected to a replacement block in the RMZ as in block
606. In block 608, entries in the RMZ data structure are
made for the redirected sectors. RMZ structure may be a list
of blocks being used as replacement blocks. The wordline
replacement itself may be Block x, WL y—=Replacement
Block a, WL b. In one embodiment, a sector is 512 bytes in
size and a metapage is made up of fixed number of sectors
depending on die geometry.

US 9,460,815 B2

7

The rest (MPs that are not with bad wordlines) of the
partial block is written in block 610. In block 612, entries in
the GAT are made for the partial block including the bad
wordlines. In particular, the GAT includes addresses to the
RMZ for data that would have been stored in MPs including
the bad wordlines.

FIG. 7 is a process for reading data from a partial block.
In block 702, read request that are directed towards bad
wordlines are detected. In block 704, a request to the bad
wordline(s) is broken into two or more requests where one
of those requests covers the redirected/RMZ writes and the
other requests cover the remaining (non-RMZ) writes. In
block 706, the broken up requests are processed in order.

Another operation for this remapping process would be
the invalidation of obsolete data. Erase/write requests to the
LBA range that covers the bad wordlines is detected. The
LBA range in the RMZ would then need to be invalidated.
Another operation for the remapping is a compaction pro-
cess for compacting blocks in the RMZ if the RMZ is short
of space. This operation may be a garbage collection opera-
tion for the replacement blocks of the RMZ. The compaction
may include double the capacity of failure WL count during
format time. The oldest replacement block is used as the
source. The logical group (“LG”) numbers from the word-
line are scanned and the LG’s latest location is checked to
see if it is still in a block which is remapped. The wordline
is moved to a target block. All new locations are committed
in one iteration after the entire move.

A “computer-readable medium,” “machine readable
medium,” “propagated-signal” medium, and/or “signal-
bearing medium” may comprise any device that includes,
stores, communicates, propagates, or transports software for
use by or in connection with an instruction executable
system, apparatus, or device. The machine-readable medium
may selectively be, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. A non-
exhaustive list of examples of a machine-readable medium
would include: an electrical connection “electronic” having
one or more wires, a portable magnetic or optical disk, a
volatile memory such as a Random Access Memory
“RAM”, a Read-Only Memory “ROM”, an Erasable Pro-
grammable Read-Only Memory (EPROM or Flash
memory), or an optical fiber. A machine-readable medium
may also include a tangible medium upon which software is
printed, as the software may be electronically stored as an
image or in another format (e.g., through an optical scan),
then compiled, and/or interpreted or otherwise processed.
The processed medium may then be stored in a processor,
memory device, computer and/or machine memory.

In an alternative embodiment, dedicated hardware imple-
mentations, such as application specific integrated circuits,
programmable logic arrays and other hardware devices, can
be constructed to implement one or more of the methods
described herein. Applications that may include the appara-
tus and systems of various embodiments can broadly include
a variety of electronic and computer systems. One or more
embodiments described herein may implement functions
using two or more specific interconnected hardware modules
or devices with related control and data signals that can be
communicated between and through the modules, or as
portions of an application-specific integrated circuit.
Accordingly, the present system encompasses software,
firmware, and hardware implementations.

The illustrations of the embodiments described herein are
intended to provide a general understanding of the structure
of the various embodiments. The illustrations are not

10

15

20

25

30

35

40

45

50

55

60

8

intended to serve as a complete description of all of the
elements and features of apparatus and systems that utilize
the structures or methods described herein. Many other
embodiments may be apparent to those of skill in the art
upon reviewing the disclosure. Other embodiments may be
utilized and derived from the disclosure, such that structural
and logical substitutions and changes may be made without
departing from the scope of the disclosure. Additionally, the
illustrations are merely representational and may not be
drawn to scale. Certain proportions within the illustrations
may be exaggerated, while other proportions may be mini-
mized. Accordingly, the disclosure and the figures are to be
regarded as illustrative rather than restrictive.

We claim:

1. A method for remapping block and plane-based archi-
tecture memory comprising:

in a non-volatile storage device having a controller and

blocks of memory with a metapage-based addressing

architecture, wherein each metapage comprises pages

across two or more planes, the controller:

allocates a group of replacement blocks that comprises
a plurality of metapages;

identifies a block with one or more bad wordlines;

identifies metapages with the one or more bad word-
lines; and

addresses each of the metapages with one or more bad
wordlines to point to a replacement metapage in the
replacement blocks.

2. The method of claim 1 wherein the identified block
stores valid data in wordlines other than the one or more bad
wordlines.

3. The method of claim 1 further comprising the control-
ler:

receiving a read request for data stored in the block with

the one or more bad wordlines.

4. The method of claim 3 further comprising the control-
ler:

retrieving data from the block requested by the read

request that is stored in the block; and

retrieving data that would have been stored in the one or

more bad wordlines by redirecting to the replacement
metapages in the replacement blocks.

5. The method of claim 1 further comprising the control-
ler:

receiving a write request for data to the one or more bad

wordlines of the identified block; and

writing data to the replacement metapages in the replace-

ment blocks.

6. The method of claim 1 further comprising the control-
ler:

addressing metapages with wordlines physically neigh-

boring the one or more bad wordlines in the identified
block to point to replacement metapages in the replace-
ment blocks.

7. The method of claim 5 further comprising the control-
ler:

compacting the replacement blocks when it is written to.

8. The method of claim 7, wherein the step of compacting
the replacement blocks comprises a garbage collection
operation on the replacement blocks.

9. The method of claim 7, wherein the compacting the
replacement blocks further comprises:

identifying an erased target block in the group of replace-

ment blocks;

determining whether an unerased replacement block con-

tains non-obsolete wordlines;

US 9,460,815 B2

9

moving the data in the determined replacement bock to
the target block when at least one wordline is non-
obsolete; and
erasing the determined replacement block.
10. A method for remapping block-based architecture
memory comprising:
in a non-volatile storage device having a controller and
blocks of memory with a block based addressing archi-
tecture, wherein the controller:
allocates a group of replacement blocks that address
chunks of data less than block sized, further wherein
the allocates further comprises that the controller:
identifies a block with one or more bad wordlines;
addresses the one or more bad wordlines in the
identified block to point to one of the replacement
blocks;
receives a write request for data to the block with one
or more bad wordlines; and
compacts the replacement block when it is written to,
wherein the controller compacts the replacement
block by performing operations comprising:
identifying an erased target block in the group of
replacement blocks;
determining whether an unerased replacement
block contains non-obsolete wordlines;
moving the data in the determined replacement
block to the target block when at least one
wordline is non-obsolete; and
erasing the determined replacement block.
11. The method of claim 10, wherein the controller
compacts the replacement block by performing a garbage
collection operation on the replacement blocks.

#* #* #* #* #*

25

30

10

